28 research outputs found

    Identification of a mutated BHK-21 cell line that became less susceptible to Japanese encephalitis virus infection

    Get PDF
    The pathogenesis of Japanese encephalitis virus (JEV) is not definitely elucidated as the initial interaction between virus and host cell receptors required for JEV infection is not clearly defined yet. Here, in order to discover those membrane proteins that may be involved in JEV attachment to or entry into virus permissive BHK-21 cells, a chemically mutated cell line (designated 3A10-3F) that became less susceptible to JEV infection was preliminarily established and selected by repeated low moi JEV challenges and RT-PCR detection for viral RNA E gene fragment. The susceptibility to JEV of 3A10-3F cells was significantly weakened compared with parental BHK-21 cells, verified by indirect immunofluorescence assay, virus plague formation assay, and flow cytometry. Finally, two-dimensional electrophoresis (2-DE) coupled with LC-MS/MS was utilized to recognize the most differentially expressed proteins from membrane protein extracts of 3A10-3F and BHK-21 cells respectively. The noted discrepancy of membrane proteins included calcium binding proteins (annexin A1, annexin A2), and voltage-dependent anion channels proteins (VDAC 1, VDAC 2), suggesting that these molecules may affect JEV attachment to and/or entry into BHK-21 cells and worthy of further investigation

    Does Japanese encephalitis virus share the same cellular receptor with other mosquito-borne flaviviruses on the C6/36 mosquito cells?

    Get PDF
    Japanese encephalitis virus (JEV) is a member of mosquito-borne Flaviviridae. To date, the mechanisms of the early events of JEV infection remain poorly understood, and the cellular receptors are unidentified. There are evidences that the structure of the virus attachment proteins (VAP), envelope glycoprotein of mosquito-borne flaviviruses is very similar, and the vector-virus interaction of mosquito-borne flaviviruses is also very similar. Based on the studies previously demonstrated that the similar molecules present on the mosquito cells involved in the uptake process of JEV, West Nile virus (WNV) and Dengue virus (DV), it is proposed that the same receptor molecules for mosquito-borne flaviviruses (JEV, WNV and DV) may present on the surface of C6/36 mosquito cells. By co-immunoprecipitation assay, we investigated a 74-KDa protein on the C6/36 cells binds JEV, and the mass spectrometry results indicated it may be heat shock cognate protein 70(HSC70) from Aedes aegypti. Based upon some other viruses use of heat shock protein 70 (HSP70) family proteins as cell receptors, its possible HSC70's involvement in the fusion of the JEV E protein with the C6/36 cells membrane, and known form of cation channels in the interaction of HSC70 with the lipid bilayer, it will further be proposed that HSC70 as a penetration receptor mediates JEV entry into C6/36 cells

    3D-SeqMOS: A Novel Sequential 3D Moving Object Segmentation in Autonomous Driving

    Full text link
    For the SLAM system in robotics and autonomous driving, the accuracy of front-end odometry and back-end loop-closure detection determine the whole intelligent system performance. But the LiDAR-SLAM could be disturbed by current scene moving objects, resulting in drift errors and even loop-closure failure. Thus, the ability to detect and segment moving objects is essential for high-precision positioning and building a consistent map. In this paper, we address the problem of moving object segmentation from 3D LiDAR scans to improve the odometry and loop-closure accuracy of SLAM. We propose a novel 3D Sequential Moving-Object-Segmentation (3D-SeqMOS) method that can accurately segment the scene into moving and static objects, such as moving and static cars. Different from the existing projected-image method, we process the raw 3D point cloud and build a 3D convolution neural network for MOS task. In addition, to make full use of the spatio-temporal information of point cloud, we propose a point cloud residual mechanism using the spatial features of current scan and the temporal features of previous residual scans. Besides, we build a complete SLAM framework to verify the effectiveness and accuracy of 3D-SeqMOS. Experiments on SemanticKITTI dataset show that our proposed 3D-SeqMOS method can effectively detect moving objects and improve the accuracy of LiDAR odometry and loop-closure detection. The test results show our 3D-SeqMOS outperforms the state-of-the-art method by 12.4%. We extend the proposed method to the SemanticKITTI: Moving Object Segmentation competition and achieve the 2nd in the leaderboard, showing its effectiveness

    Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium

    Get PDF
    The endometrium is the inner lining of the uterus. Following specific cyclic hormonal stimulation, endometrial stromal fibroblasts (stroma) and vascular endothelial cells exhibit morphological and biochemical changes to support embryo implantation and regulate vascular function, respectively. Herein, we integrated a resin-based porous membrane in a dual chamber microfluidic device in polydimethylsiloxane that allows long term in vitro co-culture of human endometrial stromal and endothelial cells. This transparent, 2-m porous membrane separates the two chambers, allows for the diffusion of small molecules and enables high resolution bright field and fluorescent imaging. Within our primary human co-culture model of stromal and endothelial cells, we simulated the temporal hormone changes occurring during an idealized 28-day menstrual cycle. We observed the successful differentiation of stroma into functional decidual cells, determined by morphology as well as biochemically as measured by increased production of prolactin. By controlling the microfluidic properties of the device, we additionally found that shear stress forces promoted cytoskeleton alignment and tight junction formation in the endothelial layer. Finally, we demonstrated that the endometrial perivascular stroma model was sustainable for up to 4 weeks, remained sensitive to steroids and is suitable for quantitative biochemical analysis. Future utilization of this device will allow the direct evaluation of paracrine and endocrine crosstalk between these two cell types as well as studies of immunological events associated with normal versus disease-related endometrial microenvironments

    The Implementation of Uncertainty Models for Fraud Detection on Mobile Advertising

    No full text
    Mobile advertisement fraud and anti-fraud are two competitors that try to suppress each other. This research is developing anti-fraud applications on mobile advertisements using uncertainty model theories which have the potential of ending this circle. We implement methods by using fuzzy set theory to detect cheaters with suspicious degree and methods of rough set theory to demonstrate how to avoid the detection from fraudsters. The analysis in this research and the implementation of these uncertainty models could be the solutions for the future mobile Internet advertisement anti-fraud systems

    Fault diagnosis of rigid cage guide based on wavelet packet and BP neural network

    No full text
    In view of problems that existing fault diagnosis methods of rigid cage guide could not eliminate influences of environmental factors and low recognition rate of joint faults, a method of fault diagnosis of rigid cage guide based on wavelet packet and BP neural network was proposed in order to improve accuracy of identification of fault types of rigid cage guide. Experimental platform of lifting system of vertical shaft was set up to simulate two typical fault types of rigid cage guide including step protrusion and joint failure, and vibration acceleration signal of lifting vessel was collected. Wavelet packet decomposition was applied to carry out energy analysis and extract fault characteristic parameters. The fault characteristic parameters were taken as input of BP neural network, and a new test sample was selected to detect diagnostic effect of the neural network. The experimental results show that the method has high accuracy of fault identification, and the confidence level reaches to 0.91

    Research on Synchronous Control of Active Disturbance Rejection Position of Multiple Hydraulic Cylinders of Digging-Anchor-Support Robot

    No full text
    In order to solve the problems of nonlinearity, uncertainty and coupling of multi-hydraulic cylinder group platform of a digging-anchor-support robot, as well as the lack of synchronization control accuracy of hydraulic synchronous motors, an improved Automatic Disturbance Rejection Controller-Improved Particle Swarm Optimization (ADRC-IPSO) position synchronization control method is proposed. The mathematical model of a multi-hydraulic cylinder group platform of a digging-anchor-support robot is established, the compression factor is used to replace the inertia weight, and the traditional Particle Swarm Optimization (PSO) algorithm is improved by using the genetic algorithm theory to improve the optimization range and convergence rate of the algorithm, and the parameters of the Active Disturbance Rejection Controller (ADRC) were adjusted online. The simulation results verify the effectiveness of the improved ADRC-IPSO control method. The experimental results show that, compared with the traditional ADRC, ADRC-PSO and PID controller, the improved ADRC-IPSO has better position tracking performance and shorter adjusting time, and its step signal synchronization error is controlled within 5.0 mm, and the adjusting time is less than 2.55 s, indicating that the designed controller has better synchronization control effect

    Fault diagnosis of rigid guide based on wavelet transform and improved convolutional neural network

    No full text
    Some of the existing fault diagnosis methods for rigid guide are only suitable for small sample data sets. Although some methods are suitable for large sample data sets, they ignore the multi-condition background in the actual working environment. The method of rigid guide fault diagnosis based on the convolutional neural network has the problems of huge data and computation, and easy to produce over-fitting. In order to solve these problems, a fault diagnosis method of rigid guide based on wavelet transform and improved convolutional neural network is proposed. Firstly, two kinds of defects, dislocation and gap, are set in the rigid cage guide. The vibration acceleration signals of the hoisting container under multiple working conditions are collected. Secondly, the collected vibration acceleration signals are converted into two-dimensional time-frequency images by wavelet transform. The time and frequency resolution of the two-dimensional time-frequency images processed by the Complex Morlet wavelet basis function is determined to be the best by trial and error method. Thirdly, the structure of the convolutional neural network model is adjusted. The first pooling layer and the fifth pooling layer are reserved. The second pool layer, the third pooling layer and the fourth pooling layer are replaced by small-scale convolutional layers to prevent the over-fitting phenomenon. Finally, the two-dimensional time-frequency image is input into the improved convolutional neural network model. The experimental results show the following points. â‘  After training, the average accuracy of the improved model is about 99% on the training set and 99.5% on the test set. â‘¡ When the training data reaches 200 steps, the accuracy of the improved model is more than 99%, and the loss function of the improved model approaches 0. These results show that the improved model has good convergence performance, and the generalization of the model is enhanced. The inhibition effect on over-fitting in the learning process is obvious. â‘¢ On the confusion matrix of the validation set, the identification rate of gap defect and dislocation defects is 100%. The identification rate of no defect is 92%, and 8% of the defect are mistakenly identified as gap defects. â‘£ Compared with EMD-SVD-SVM, wavelet packet-SVM, EMD-SVD-BP neural network and wavelet packet-BP neural network, the accuracy of rigid guide fault diagnosis method based on wavelet transform and the improved convolutional neural network reaches 99%

    AHY-SLAM: Toward Faster and More Accurate Visual SLAM in Dynamic Scenes Using Homogenized Feature Extraction and Object Detection Method

    No full text
    At present, SLAM is widely used in all kinds of dynamic scenes. It is difficult to distinguish dynamic targets in scenes using traditional visual SLAM. In the matching process, dynamic points are incorrectly added to the pose calculation with the camera, resulting in low precision and poor robustness in the pose estimation. This paper proposes a new dynamic scene visual SLAM algorithm based on adaptive threshold homogenized feature extraction and YOLOv5 object detection, named AHY-SLAM. This new method adds three new modules based on ORB-SLAM2: a keyframe selection module, a threshold calculation module, and an object detection module. The optical flow method is used to screen keyframes for each frame input in AHY-SLAM. An adaptive threshold is used to extract feature points for keyframes, and dynamic points are eliminated with YOLOv5. Compared with ORB-SLAM2, AHY-SLAM has significantly improved pose estimation accuracy over multiple dynamic scene sequences in the TUM open dataset, and the absolute pose estimation accuracy can be increased by up to 97%. Compared with other dynamic scene SLAM algorithms, the speed of AHY-SLAM is also significantly improved under a guarantee of acceptable accuracy
    corecore